All-Pass Filter Based Linear Voltage Controlled Quadrature Oscillator

Author:

Mathur Koushick1,Venkateswaran Palaniandavar2ORCID,Nandi Rabindranath2ORCID

Affiliation:

1. Department of Electronics & Communication Engineering, UIT, Burdwan University, West Bengal 713104, India

2. Department of Electronics & Telecommunication Engineering, Jadavpur University, Kolkata 700032, India

Abstract

A linear voltage controlled quadrature oscillator implemented from a first-order electronically tunable all-pass filter (ETAF) is presented. The active element is commercially available current feedback amplifier (AD844) in conjunction with the relatively new Multiplication Mode Current Conveyor (MMCC) device. Electronic tunability is obtained by the control node voltage (V) of the MMCC. Effects of the device nonidealities, namely, the parasitic capacitors and the roll-off poles of the port-transfer ratios of the device, are shown to be negligible, even though the usable high-frequency ranges are constrained by these imperfections. Subsequently the filter is looped with an electronically tunable integrator (ETI) to implement the quadrature oscillator (QO). Experimental responses on the voltage tunable phase of the filter and the linear-tuning law of the quadrature oscillator up to 9.9 MHz at low THD are verified by simulation and hardware tests.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resistorless Phase Shifter Realization with a Single VDGA;2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON);2022-05-24

2. NanoCMOS optimized DVCC-based quadrature voltage controlled oscillator performances prediction through bisquare-weights method;Analog Integrated Circuits and Signal Processing;2019-02-14

3. Practical design of the voltage controllable quadrature oscillator for operation in MHz bands employing new behavioral model of variable-voltage-gain current conveyor of second generation;Journal of Computational Electronics;2018-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3