Application of Multiobjective Optimization Integrating Numerical and Scientific Computing in Graph Theory Coloring Algorithm

Author:

Li Shuxia12ORCID

Affiliation:

1. College of Mathematical Sciences, Inner Mongolia Normal University, Hohhot 010020, Inner Mongolia, China

2. Inner Mongolia Center for Applied Mathematics, Hohhot 010020, Inner Mongolia, China

Abstract

In the current era of increasingly complex social life, as people’s demand quality is getting higher and higher, the solution of the problem often has multiple indicators to achieve the optimum. This forces the graph coloring problem (GCP) to become complicated, and it is difficult to directly obtain the optimal solution, which brings new challenges to the solution of the problem. In response to this problem, the GCP field is of great research significance. With the in-depth study of GCP, the research on multiobjective optimization (MOO) in graph coloring algorithm (GCA) is gradually carried out. Its performance advantage is of great significance for solving multicondition constraint problems. This paper aims to study the application of Genetic Algorithm (GA) in GCA. Through the analysis and research of GA, and the fusion of numerical analysis and scientific computing, it can be applied to the construction of the neighbor distinguishable uniform V-full coloring algorithm (AVDEVTCA) to solve the AVDEVTC problem. This paper describes the basic theory of MOO and graph coloring. It conducts an experimental analysis of the algorithm performance and uses the relevant theoretical formulas to explain it. The results show that the algorithm takes 5754.142 S seconds to test 21325415 images and can color a large number of results that cannot be done manually in less time. It has greatly improved in terms of time and manpower saving and greatly improved practicability and work efficiency.

Funder

Science and Technology Research Project of Colleges and Universities in Inner Mongolia Autonomous Region

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3