Effect of the Change of Deposition Time on the Secondary Direction and Abnormal Shape of Grains Growth of SnO2Thin Films

Author:

Jeong Jin1ORCID

Affiliation:

1. Department of Physics, Chosun University, Gwangju 501-759, Republic of Korea

Abstract

SnO2thin films were grown on Si substrate using the low pressure chemical vapor deposition method. Observations made through electron microscopy indicate that thin films tend to grow with a constant direction when deposited at a temperature of 420°C for 5, 10, 20, or 30 min. However, when the deposition time increases, the particles forming the thin films are subject to a secondary growth. Observations made under a high-resolution transmission electron microscope reveal the lattice shape characteristic of thin films, with an overlapped or wrinkled flower form, and indicate that thin films growth takes place in different directions during the secondary growth. Measurements of the Hall effect show that the carriers mobility in the thin films increases linearly with the deposition time, whereas the carrier density decreases. The Hall Rh value increased linearly until 20 min deposition time, whereas for thin film grown for 30 min it decreased rapidly, showing a relatively similar behaviour to the carrier density. This is because as the deposition time becomes longer, the second growth and atypical shape occurs, leading to an increase of the thin films Rh value. This phenomenon indicates that the deposition time of thin films affects their carrier density and atypical overlapped or wrinkled flower form.

Funder

Chosun University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3