Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features

Author:

Adetiba Emmanuel1,Olugbara Oludayo O.1

Affiliation:

1. ICT and Society Research Group, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa

Abstract

This paper reports an experimental comparison of artificial neural network (ANN) and support vector machine (SVM) ensembles and their “nonensemble” variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer using samples of patient nucleotides with mutations in the epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene, and tumor suppressor p53 genomes collected as biomarkers from the IGDB.NSCLC corpus. The Voss DNA encoding was used to map the nucleotide sequences of mutated and normal genomes to obtain the equivalent numerical genomic sequences for training the selected classifiers. The histogram of oriented gradient (HOG) and local binary pattern (LBP) state-of-the-art feature extraction schemes were applied to extract representative genomic features from the encoded sequences of nucleotides. The ANN ensemble and HOG best fit the training dataset of this study with an accuracy of 95.90% and mean square error of 0.0159. The result of the ANN ensemble and HOG genomic features is promising for automated screening and early detection of lung cancer. This will hopefully assist pathologists in administering targeted molecular therapy and offering counsel to early stage lung cancer patients and persons in at risk populations.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Lung Cancer Detection and Classification Using Deep Learning Techniques;Smart Innovation, Systems and Technologies;2024

2. An efficient lung image classification and detection using spiral‐optimized Gabor filter with convolutional neural network;International Journal of Imaging Systems and Technology;2023-12-29

3. Crow-ENN;Research Anthology on Bioinformatics, Genomics, and Computational Biology;2023-12-29

4. Lung Cancer Detection Using Deep Learning-Based Convolutional Neural Networks;2023 3rd Asian Conference on Innovation in Technology (ASIANCON);2023-08-25

5. Early diagnosis of lung cancer using deep learning and uncertainty measures;Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi;2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3