Frame Duplication Forgery Detection and Localization Algorithm Based on the Improved Levenshtein Distance

Author:

Ren Honge12ORCID,Atwa Walid3,Zhang Haosu2,Muhammad Shafiq4,Emam Mahmoud5ORCID

Affiliation:

1. College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China

2. Heilongjiang Forestry Intelligent Equipment Engineering Research Center, Harbin 150040, China

3. Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shebin El-Koom 32511, Egypt

4. Cyberspace Institute of Advance Technology, Guangzhou University, Guangzhou, China

5. Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511, Egypt

Abstract

In this digital era of technology and software development tools, low-cost digital cameras and powerful video editing software (such as Adobe Premiere, Microsoft Movie Maker, and Magix Vegas) have become available for any common user. Through these softwares, editing the contents of digital videos became very easy. Frame duplication is a common video forgery attack which can be done by copying and pasting a sequence of frames within the same video in order to hide or replicate some events from the video. Many algorithms have been proposed in the literature to detect such forgeries from the video sequences through analyzing the spatial and temporal correlations. However, most of them are suffering from low efficiency and accuracy rates and high computational complexity. In this paper, we are proposing an efficient and robust frame duplication detection algorithm to detect duplicated frames from the video sequence based on the improved Levenshtein distance. Extensive experiments were performed on some selected video sequences captured by stationary and moving cameras. In the experimental results, the proposed algorithm showed efficacy compared with the state-of-the-art techniques.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3