Basil Polysaccharide Reverses Development of Experimental Model of Sepsis-Induced Secondary Staphylococcus aureus Pneumonia

Author:

Chen Xi1,He Yue2,Wei Qiang1,Wang Chuanjiang3ORCID

Affiliation:

1. Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

2. Department of Urology, North Kuanren General Hospital, Chongqing, China

3. Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Abstract

Background. Basil polysaccharide (BPS) represents a main active ingredient extracted from basil (Ocimum basilicum L.), which can regulate secondary bacterial pneumonia development in the process of sepsis-mediated immunosuppression. Methods. In this study, a dual model of sepsis-induced secondary pneumonia with cecal ligation and puncture and intratracheal instillation of Staphylococcus aureus or Pseudomonas aeruginosa was constructed. Results. The results indicated that BPS-treated mice undergoing CLP showed resistance to secondary S. aureus pneumonia. Compared with the IgG-treated group, BPS-treated mice exhibited better survival rate along with a higher bacterial clearance rate. Additionally, BPS treatment attenuated cell apoptosis, enhanced lymphocyte and macrophage recruitment to the lung, promoted pulmonary cytokine production, and significantly enhanced CC receptor ligand 4 (CCL4). Notably, recombinant CCL4 protein could enhance the protective effect on S. aureus-induced secondary pulmonary infection of septic mice, which indicated that BPS-induced CCL4 partially mediated resistance to secondary bacterial pneumonia. In addition, BPS priming markedly promoted the phagocytosis of alveolar macrophages while killing S. aureus in vitro, which was related to the enhanced p38MAPK signal transduction pathway activation. Moreover, BPS also played a protective role in sepsis-induced secondary S. aureus pneumonia by inducing Treg cell differentiation. Conclusions. Collectively, these results shed novel lights on the BPS treatment mechanism in sepsis-induced secondary S. aureus pneumonia in mice.

Funder

Chongqing Science and Technology Commission

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3