Adaptive Algorithm Recommendation and Application of Learning Resources in English Fragmented Reading

Author:

Cheng Jinyu1,Wang Hong2ORCID

Affiliation:

1. International Education College, Wuhan Sports University, Wuhan 430079, China

2. Wushu College, Wuhan Sports University, Wuhan 430079, China

Abstract

This paper firstly designs a five-dimensional model of learners’ characteristics (learners’ English reading ability, cognitive style, learning goal, learning situation, and learning effect) and a three-dimensional model of English reading resources’ characteristics (question types, topics, and difficulty of resources) in a fragmented learning environment through literature research. At the same time, to make the learning resources meet the characteristics of fragmented learning time and space, the English Level 4 reading resources are reasonably designed and segmented to adapt to the needs of learners’ mobile fragmented learning. Then, combined with machine learning algorithms, an adaptive recommendation model of learning resources in English fragmented reading is constructed. The algorithm-based adaptive recommendation algorithm for English fragmented reading resources is designed. Based on the generated decision trees, the expression rules are parsed to achieve adaptive pushing of resources. The results of this study show that adaptive recommendation of learning resources in English fragmented reading can help teachers to develop future resource recommendation strategies through effective data collection to adaptively push resources that are close to learners’ individual needs. The use of mobile by English learners to learn to read in a fragmented learning context enables targeted training in weak areas of English reading, thus enhancing different aspects of learners’ reading skills.

Funder

Wuhan Sports University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3