Parameter Resolution of the Estimation Methods for Power Law Indices

Author:

Zhou Zheng-Yun1,Ding Yi-Ming1ORCID

Affiliation:

1. School of Science, Wuhan University of Technology, Wuhan 430070, China

Abstract

The accuracy of parameter estimation plays an important role in economic and social models and experiments. Parameter resolution is the capability of an estimation algorithm to distinguish different parameters effectively under given noise level, which can be used to select appropriate algorithm for experimental or empirical data. We use a flexible distinguishing criterion and present a framework to compute the parameter resolution by bootstrap and simulation, which can be used in different models and algorithms, even for non-Gaussian noises. The parameter resolutions are computed for power law models and corresponding algorithms. For power law signal, with the increase of SNR, parameter resolution is finer; with the decrease of parameter, the resolution is finer. The standard deviation of noise and parameter resolution satisfies the linear relation; it relates to interval estimation naturally if the estimation algorithm is asymptotically normal. For power law distribution, parameter and resolution satisfy the linear relation, and experimental slope and theoretical slope tend to be consistent when significance level approaches zero. Last, we select an algorithm with finer resolution to estimate the Pareto index for the Forbes list of global rich data in recent 10 years and analyze the changes in the gap between the rich and the poor.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3