Multiobjective Sensor Ontology Matching Technique with User Preference Metrics

Author:

Zhu Hai1ORCID,Xue Xingsi2ORCID,Jiang Chengcai3ORCID,Ren He3ORCID

Affiliation:

1. School of Network Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, China

2. Intelligent Information Processing Research Center, Fujian University of Technology, Fuzhou, Fujian 350118, China

3. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Due to the problem of data heterogeneity in the semantic sensor networks, the communications among different sensor network applications are seriously hampered. Although sensor ontology is regarded as the state-of-the-art knowledge model for exchanging sensor information, there also exists the heterogeneity problem between different sensor ontologies. Ontology matching is an effective method to deal with the sensor ontology heterogeneity problem, whose kernel technique is the similarity measure. How to integrate different similarity measures to determine the alignment of high quality for the users with different preferences is a challenging problem. To face this challenge, in our work, a Multiobjective Evolutionary Algorithm (MOEA) is used in determining different nondominated solutions. In particular, the evaluating metric on sensor ontology alignment’s quality is proposed, which takes into consideration user’s preferences and do not need to use the Reference Alignment (RA) beforehand; an optimization model is constructed to define the sensor ontology matching problem formally, and a selection operator is presented, which can make MOEA uniformly improve the solution’s objectives. In the experiment, the benchmark from the Ontology Alignment Evaluation Initiative (OAEI) and the real ontologies of the sensor domain is used to test the performance of our approach, and the experimental results show the validity of our approach.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference30 articles.

1. New Generation Sensor Web Enablement

2. Building a sensor ontology: a practical approach leveraging ISO and OGC models;D. J. Russomanno

3. Semantic Challenges for Sensor Plug and Play

4. Semantic Sensor Web

5. Formal ontology and information systems;C. W. B. Smith;Telemedicine & Virtual Reality,1993

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3