Affiliation:
1. Department of Pharmacy, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an 223002, China
2. Department of Pharmacy, Lianshui People’s Hospital Affiliated to Kangda College, Nanjing Medical University, Huai’an 223300, China
Abstract
Drug-target interactions provide useful information for biomedical drug discovery as well as drug development. However, it is costly and time consuming to find drug-target interactions by experimental methods. As a result, developing computational approaches for this task is necessary and has practical significance. In this study, we establish a novel dual Laplacian graph regularized logistic matrix factorization model for drug-target interaction prediction, referred to as DLGrLMF briefly. Specifically, DLGrLMF regards the task of drug-target interaction prediction as a weighted logistic matrix factorization problem, in which the experimentally validated interactions are allocated with larger weights. Meanwhile, by considering that drugs with similar chemical structure should have interactions with similar targets and targets with similar genomic sequence similarity should in turn have interactions with similar drugs, the drug pairwise chemical structure similarities as well as the target pairwise genomic sequence similarities are fully exploited to serve the matrix factorization problem by using a dual Laplacian graph regularization term. In addition, we design a gradient descent algorithm to solve the resultant optimization problem. Finally, the efficacy of DLGrLMF is validated on various benchmark datasets and the experimental results demonstrate that DLGrLMF performs better than other state-of-the-art methods. Case studies are also conducted to validate that DLGrLMF can successfully predict most of the experimental validated drug-target interactions.
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献