An Efficient Polynomial Chaos Method for Stiffness Analysis of Air Spring Considering Uncertainties

Author:

Kong Feng12,Si Penghao12,Yin Shengwen12ORCID

Affiliation:

1. School of Traffic & Transportation Engineering, Central South University, Changsha, Hunan 410075, China

2. Key Laboratory of Traffic Safety on Track, Ministry of Education, Changsha, China

Abstract

Traditional methods for stiffness analysis of the air spring are based on deterministic assumption that the parameters are fixed. However, uncertainties have widely existed, and the mechanic property of the air spring is very sensitive to these uncertainties. To model the uncertainties in the air spring, the interval/random variables models are introduced. For response analysis of the interval/random variables models of the air spring system, a new unified orthogonal polynomial expansion method, named as sparse quadrature-based interval and random moment arbitrary polynomial chaos method (SQ-IRMAPC), is proposed. In SQ-IRMAPC, the response of the acoustic system related to both interval and random variables is approximated by the moment-based arbitrary orthogonal polynomial expansion. To efficiently calculate the coefficient of the interval and random orthogonal polynomial expansion, the sparse quadrature is introduced. The proposed SQ-IRMAPC was employed to analyze the mechanic performance of an air spring with interval and/or random variables, and its effectiveness has been demonstrated by fully comparing it with the most recently proposed orthogonal polynomial-based interval and random analysis method.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3