Binary Bitwise Artificial Bee Colony as Feature Selection Optimization Approach within Taguchi’s T-Method

Author:

Harudin Nolia1ORCID,Ramlie Faizir2ORCID,Wan Muhamad Wan Zuki Azman3ORCID,Muhtazaruddin M. N.2ORCID,Jamaludin Khairur Rijal2ORCID,Abu Mohd Yazid4ORCID,Marlan Zulkifli Marlah2ORCID

Affiliation:

1. Department of Mechanical Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia

2. Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia

3. Institute of Engineering Mathematics, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia

4. Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia

Abstract

Taguchi’s T-Method is one of the Mahalanobis Taguchi System- (MTS-) ruled prediction techniques that has been established specifically but not limited to small, multivariate sample data. The prediction model’s complexity aspect can be further enhanced by removing features that do not provide valuable information on the overall prediction. In order to accomplish this, a matrix called orthogonal array (OA) is used within the existing Taguchi’s T-Method. However, OA’s fixed-scheme matrix and its drawback in coping with the high-dimensionality factor led to a suboptimal solution. On the contrary, the usage of SNR (dB) as its objective function was a reliable measure. The application of Binary Bitwise Artificial Bee Colony (BitABC) has been adopted as the novel search engine that helps cater to OA’s limitation within Taguchi’s T-Method. The generalization aspect using bootstrap was a fundamental addition incorporated in this research to control the effect of overfitting in the analysis. The adoption of BitABC has been tested on eight (8) case studies, including large and small sample datasets. The result shows improved predictive accuracy ranging between 13.99% and 32.86% depending on cases. This study proved that incorporating BitABC techniques into Taguchi’s T-Method methodology effectively improved its prediction accuracy.

Funder

Universiti Teknologi Malaysia

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3