Mitophagy Impairment Aggravates Cisplatin-Induced Ototoxicity

Author:

Cho Sung Il1ORCID,Jo Eu-Ri1ORCID,Song Hansoo2ORCID

Affiliation:

1. Department of Otolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Republic of Korea

2. Department of Occupational & Environmental Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea

Abstract

Cisplatin is an efficacious anticancer agent, but its use is limited by ototoxicity and resultant irreversible sensorineural hearing loss. Cisplatin ototoxicity is associated with cochlear cell oxidative stress and mitochondrial damage. However, mitophagy is vital for maintaining mitochondrial quality and cellular metabolism. Accordingly, we investigated the role of mitophagy in regulating cisplatin-induced ototoxicity using the auditory cell line HEI-OC1. In this study, HEI-OC1 cells were treated with either cisplatin alone (10 μM, 0, 8, 16, and 24 h); cisplatin (10 μM, 24 h) post transfection with small-interfering (si)RNAs targeting mitophagy-associated mRNAs; cisplatin (10 μM, 24 h) succeeding pretreatment with the mitophagy suppressor, 3-methyladenine (3-MA; 5 or 10 mM, 6 h); or cisplatin (30 μM, 24 h) following pretreatment with the mitophagy promoter, carbonyl cyanide m-chlorophenylhydrazone (CCCP; 1 or 2 μM, 2 h). The viability of cells, expression of mitophagy marker, and mitochondrial functions were then assessed in these cells. Cell viability was determined by a water-soluble tetrazolium assay; expression of mitophagy-associated proteins PINK1, Parkin, BNIP3, FUNDC1, p62, and LC3B was analyzed by Western blotting, mitochondrial membrane potential by flow cytometry, intracellular ATP by spectrophotometry, and mitochondrial degradation by dual staining for mitochondria and autophagosomes or lysosomes. Our results showed that cisplatin gradually reduced the viable cell number over time, induced mitochondrial depolarization, decreased intracellular ATP concentration, and enhanced the expression of PINK1, Parkin, BNIP3, p62, and LC3B. In addition, Parkin and BNIP3 knockdown accelerated cisplatin-induced loss of cell viability, mitochondrial membrane potential, mitophagosome/lysosome formation, and reduction in intracellular ATP production. Pretreatment with 3-MA aggravated the cisplatin-induced cytotoxicity, while that with CCCP reversed this effect. Overall, our findings indicate that mitophagy protects HEI-OC1 cells against cisplatin-induced cell death. Consequently, we strongly believe that targeted promotion of mitophagy may confer protection against cisplatin-induced ototoxicity.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3