Quantum Clone Elite Genetic Algorithm-Based Evaluation Mechanism for Maximizing Network Efficiency in Soil Moisture Wireless Sensor Networks

Author:

Xiao Jing1,Liu Yang1ORCID,Zhou Jie1ORCID

Affiliation:

1. College of Information Science and Technology, Shihezi University, Shihezi 832000, China

Abstract

In agriculture, soil moisture wireless sensor networks (SMWSNs) are used to monitor the growth of crops for obtaining higher yields. The purpose of this paper is to improve the network efficiency of SMWSNs. Therefore, we propose a novel network efficiency evaluation mechanism which is suitable for soil moisture sensors and design a sensor target allocation model (STAM) for the actual agricultural situation. After that, a quantum clone elite genetic algorithm (QCEGA) is proposed; then, QCEGA is applied to optimize the STAM for obtaining optimal results. QCEGA uses the parallel mechanism of quantum computing to encode individuals, integrates the quantum revolving gate in quantum computing and the concept of cloning in biology to avoid the algorithm from falling into local optimum, and applies the elite strategy to speed up the convergence of the algorithm. Subsequently, the proposed algorithm is compared with simulated annealing (SA) and particle swarm optimization (PSO). Under the novel network efficiency evaluation mechanism, the simulation results demonstrate that the network efficiency based on QCEGA is higher than that of SA and PSO; what is more, QCEGA has better convergence performance. In comparison with traditional wireless sensor network efficiency evaluation approaches, our methods are more in line with the development of modern agriculture and can effectively improve the efficiency of SMWSNs, thus ensuring that crops can have a better growth condition.

Funder

Shihezi University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3