Design and dSPACE Implementation of a Simplified Fuzzy Control of a DC-DC Three-Level Converter

Author:

Doubabi Hajar1ORCID,Salhi Issam1ORCID

Affiliation:

1. Cadi Ayyad University, PB 549 Av. Abdelkarim Elkhattabi, Gueliz, Marrakesh, Morocco

Abstract

The design of an efficient DC-DC converter depends critically on its suitable control. In this paper, a new simplified output tracking control strategy for a DC-DC three-level boost converter is presented. The proposed strategy is characterized by its good tracking performances, its simplicity of design, and the stability that is ensured over the entire operating range. Thanks to (i) the adopted Takagi–Sugeno (TS) fuzzy approach; (ii) the small-signal model derived under the large domain of operating conditions, and (iii) the proportional-integral (PI) controllers’ merit. After introducing the three-level boost converter topology, the operating principles and mathematical modeling are addressed. Then, the proposed output control strategy is developed based on the PI control and the TS fuzzy approximation. A controller ensuring the capacitor voltages balancing has been also introduced in this paper. Experimental results using dSPACE (DS1104) and a laboratory prototype of three-level boost converter demonstrate the flexibility of the proposed controller, its reference tracking capability, and its ability to satisfy the performance specification over the whole operating range of the system.

Funder

Centre National pour la Recherche Scientifique et Technique

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical model and control of a three-level boost converter used as electronic interface for fuel cell vehicles;2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON);2023-12-08

2. Fuzzy Based Interleaved Step-up Converter for Electric Vehicle;Intelligent Automation & Soft Computing;2023

3. Dynamic analysis of solar powered two-stage dc–dc converter with MPPT and voltage regulation;International Journal of Dynamics and Control;2022-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3