Harmonic Classification with Enhancing Music Using Deep Learning Techniques

Author:

Tang Wen1,Gu Linlin1ORCID

Affiliation:

1. School of Art and Design, Nanchang University, Nanchang, China

Abstract

Automatic extraction of features from harmonic information of music audio is considered in this paper. Automatically obtaining of relevant information is necessary not just for analysis but also for the commercial issue such as music program of tutoring and generating of lead sheet. Two aspects of harmony are considered, chord and global key, facing the issue of the extraction problem by the algorithm of machine learning. Contribution here is to recognize chords in the music by the feature extraction method (voiced models) that performd better than manually one. The modelling carried out chord sequence, getting from frame-by-frame basis, which is known in recognition of the chord system. Technique of machine learning such the convolutional neural network (CNN) will systematically extract the chord sequence to achieve the superiority context model. Then, traditional classification is used to create the key classifier which is better than others or manually one. Datasets used to evaluate the proposed model show good achievement results compared with existing one.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference33 articles.

1. Xception: Deep Learning with Depthwise Separable Convolutions

2. Chord classification of an audio signal using artificial neural network;R. Shrestha;International Research Journal of Engineering and Technology (IRJET),2018

3. An Overview of Lead and Accompaniment Separation in Music

4. Lattice computation of the electromagnetic contributions to kaon and pion masses

5. On the futility of learning complex frame-level language models for chord recognition;F. Korzeniowski,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Crop Disease Classification and Prevention of Pest using Deep Transfer Ensemble Learning in Agriculture;2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3