Application of GA-BP Neural Network Optimized by Grey Verhulst Model around Settlement Prediction of Foundation Pit

Author:

Liu C. Y.1ORCID,Wang Y.1,Hu X. M.1,Han Y. L.1,Zhang X. P.1ORCID,Du L. Z.1ORCID

Affiliation:

1. College of Construction and Engineering, Jilin University, Changchun 130000, China

Abstract

Due to the limitation in the prediction of the foundation pit settlement, this paper proposed a new methodology which takes advantage of the grey Verhulst model and a genetic algorithm. In the previous study, excavation times are often the only factor to predict the settlement, which is mainly because the correspondence between real-time excavation depth and the excavation time is hard to determine. To solve this issue, the supporting times are precisely recorded and the excavation depth rate can be obtained through the excavation time length and excavation depth between two adjacent supports. After the correspondence between real-time excavation depth and the excavation time is obtained, the internal friction angle, cohesion, bulk density, Poisson’s ratio, void ratio, water level changes, permeability coefficient, number of supports, and excavation depth, which can influence the settlement, are taken to be considered in this study. For the application of the methodology, the settlement monitoring point of D4, which is near the bridge pier of the highway, is studied in this paper. The predicted values of the BP neural network, GA-BP neural network, BP neural network optimized by the grey Verhulst model, and GA-BP neural network optimized by the grey Verhulst model are detailed compared with the measured values. And the evaluation indexes of RMSE, MAE, MSE, MAPE, and R 2 are calculated for these models. The results show that the grey Verhulst model can greatly improve the consistency between predicted values and measured values, while the accuracy and resolution is still low. The genetic algorithm (GA) can greatly improve the accuracy of the predicted values, while the GA-BP neural network shows low reflection to the fluctuation of measured values. The GA-BP neural network optimized by the grey Verhulst model, which has taken the advantages of GA and the grey Verhulst model, has extremely high accuracy and well consistency with the measured values.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3