Optimal Homotopy Asymptotic Method for Investigation of Effects of Thermal Radiation, Internal Heat Generation, and Buoyancy on Velocity and Heat Transfer in the Blasius Flow

Author:

Ibrahim Dachas1,Daba Mitiku1ORCID,Bati Solomon1ORCID

Affiliation:

1. Department of Mathematics, Jimma University, Jimma, Oromia, Ethiopia

Abstract

In this study, analytical examination of effects of internal heat generation, thermal radiation, and buoyancy force on flow and heat transfer in the Blasius flow over flat plate has been presented. The governing nonlinear partial differential equations of the problem are transformed into a set of coupled nonlinear third-order ordinary differential equations by the similarity variable method and have been systematically solved using the optimal homotopy asymptotic method. The main aim of the present study is to inspect the effects of various physical parameters in the flow model on velocity and heat transfer in steady two-dimensional laminar boundary layer flow with convective boundary conditions. The influences of the Grashof number, internal heat generation, the Biot number, radiation parameter, and the Prandtl number on the skin-friction coefficient, the fluid velocity profile, and temperature distribution have been determined and discussed in detail through several plots. The finding revealed that the fluid velocity and temperature delivery upsurge with snowballing in the values of the Biot number and internal heat generation parameters. The temperature profile of the fluid declines contrary to the value of the Grashof number and the Prandtl number but increases with thermal radiation. Moreover, it is found that the skin-friction coefficient and the rate of heat intensify with the Grashof number, internal heat generation, the Biot number, and thermal radiation parameter. The obtained result is likened with the previously published numerical results in a limited case of the problem and shows an excellent agreement.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3