A PMBGA to Optimize the Selection of Rules for Job Shop Scheduling Based on the Giffler-Thompson Algorithm

Author:

Zhang Rui1,Wu Cheng2

Affiliation:

1. School of Economics and Management, Nanchang University, Nanchang 330031, China

2. Department of Automation, Tsinghua University, Beijing 100084, China

Abstract

Most existing research on the job shop scheduling problem has been focused on the minimization of makespan (i.e., the completion time of the last job). However, in the fiercely competitive market nowadays, delivery punctuality is more important for maintaining a high service reputation. So in this paper, we aim at solving job shop scheduling problems with the total weighted tardiness objective. Several dispatching rules are adopted in the Giffler-Thompson algorithm for constructing active schedules. It is noticeable that the rule selections for scheduling consecutive operations are not mutually independent but actually interrelated. Under such circumstances, a probabilistic model-building genetic algorithm (PMBGA) is proposed to optimize the sequence of selected rules. First, we use Bayesian networks to model the distribution characteristics of high-quality solutions in the population. Then, the new generation of individuals is produced by sampling the established Bayesian network. Finally, some elitist individuals are further improved by a special local search module based on parameter perturbation. The superiority of the proposed approach is verified by extensive computational experiments and comparisons.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3