Effect of Used Motor Oil and Bitumen as Additive on the Permeability and Mechanical Properties of Low Plastic Soil

Author:

Iqbal Kamran1ORCID,Xu Chengshun1,Nasir Hassan2ORCID,Alam Muhammad3ORCID,Farooq Asim2ORCID,Williams Edward J.4

Affiliation:

1. Department of Civil Engineering, Beijing University of Technology, Beijing, China

2. Department of Civil Engineering, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan

3. Department of Civil Engineering, Abasyn University, Peshawar, Pakistan

4. Department of Civil Engineering, University of Michigan-Dearborn, Dearborn, Michigan, USA

Abstract

Stability of permeable soils near large-scale water reservoirs for paved and unpaved road pavements is all too frequently compromised due to excessive seepage and the climatic conditions of that area. In this research, a multilevel research approach was adopted by conducting a comparative study of the microspectroscopy through Fourier transform infrared (FTIR) spectra to investigate the maximum absorbance correlation along with mechanical investigations (such as the compressive strength, modified proctor test, California bearing ratio test, and swell percentage test). The native low plastic soil sample (CL) was blended with varying percentages of petroleum additives (bitumen and used motor oil) independently at 0%, 4%, 8%, 12%, 16%, and 20%. A comparison of results in the case of bitumen and used motor oil revealed that a decrease in Atterberg’s limits occurred accompanied by an increase of bitumen blending percentage, while used motor oil (UMO) increased the plastic limit. Maximum dry density (MDD) increases while optimum moisture content (OMC) decreases with the increase in bitumen. Used motor oil (UMO) initially (up to 4%) increased the MDD and subsequently decreased it. Investigative reports show that bitumen causes a decrease in swell percentage and increases California bearing ratio (CBR), whereas UMO causes a continuous increase in percentage swell and decrease in CBR. The addition of bitumen in soil resulted in a decrease in the coefficient of permeability (k), while UMO has a significant result of up to 4%. Regarding the control sample, spectrum analysis through FTIR effectively supports the laboratory results as the intensity of peaks increases with the oil, and bitumen concentration reveals that oil and bitumen impart cementitious property to the soil. Moreover, this research work by experiment supported and strengthened the idea of soil pavement stabilization through bitumen, which gives antiwater stability, and facilitates low-cost construction by obtaining raw material on the spot. UMO adversely affects soil properties beyond 4% addition by weight.

Funder

Beijing University of Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3