Study on FSI Analysis Method of a Large Hydropower House and Its Vortex-Induced Vibration Regularities

Author:

Zhang Liaojun1,Yin Guojiang1ORCID,Wang Shuo1ORCID,Guan Chaonian12

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

2. Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China

Abstract

The working principle of a large hydropower station is to guide the high-pressure water flow to impact the turbine to rotate and generate electricity. The high-pressure water flow impacts the turbine blades, which forms complex high-speed eddy currents in the spiral case and the draft tube and causes complicated vortex-induced vibration problems. Traditionally used harmonic response methods and dynamic time-history analysis methods are difficult to reflect this complex fluid-solid dynamic coupling problem. In this paper, the bidirectional fluid-structure interaction (FSI) simulation analysis theory for a large hydropower house is studied, and the analysis methods of geometric simulation, mechanical simulation, and vibration energy transmission path simulation are presented. A large-scale 3D fluid-hydraulic machinery-concrete structure coupled model of a hydropower house is established to study the vortex-induced vibration mechanism and coupled vibration law during transient unit operation. A comparison of the fluid results against the in-site data shows good agreement. Structural responses of vibration displacement, velocity, and acceleration reveal coupled regularity of hydraulic machinery-concrete structure-fluid during blades rotating periods, and it comes to the conclusion that the turbine blade rotation is the main vibration source of the hydropower house. The research results can provide a scientific basis for the design and safe operation of the hydropower house.

Funder

National Key Research and Development Plan of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3