Protective Role of Coenzyme Q10 in Acute Sepsis-Induced Liver Injury in BALB/c Mice

Author:

Li Qian-wei1,Yang Qin2ORCID,Liu Hong-Yang3,Wu Yu-ling4,Hao Yu-Hua4,Zhang Xiao-Qing4ORCID

Affiliation:

1. Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China

2. Department of Internal Medicine, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China

3. Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, China

4. Department of Infection, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China

Abstract

Sepsis increases the risk of the liver injury development. According to the research works, coenzyme Q10 exhibits hepatoprotective properties in vivo as well as in vitro. Current work aimed at investigating the protective impacts of coenzyme Q10 against liver injury in septic BALB/c mice. The male BALB/c mice were randomly segregated into 4 groups: the control group, the coenzyme Q10 treatment group, the puncture and cecal ligation group, and the coenzyme Q10+cecal ligation and puncture group. Cecal ligation and puncture was conducted after gavagaging the mice with coenzyme Q10 during two weeks. Following 48 h postcecal ligation and puncture, we estimated hepatic biochemical parameters and histopathological changes in hepatic tissue. We evaluated the expression of factors associated with autophagy, pyroptosis, and inflammation. Findings indicated that coenzyme Q10 decreased the plasma levels in alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase in the cecal ligation and puncture group. Coenzyme Q10 significantly inhibited the elevation of sequestosome-1, interleukin-1β, oligomerization domain-like receptor 3 and nucleotide-binding, interleukin-6, and tumor necrosis factor-α expression levels; coenzyme Q10 also increased beclin 1 levels. Coenzyme Q10 might be a significant agent in the treatment of liver injury induced by sepsis.

Funder

Dalian Traditional Chinese Medicine Related Scientific Research program

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3