A Global Inhomogeneous Intensity Clustering- (GINC-) Based Active Contour Model for Image Segmentation and Bias Correction

Author:

Feng Chaolu12ORCID,Yang Jinzhu13,Lou Chunhui3,Li Wei23ORCID,Yu Kun2,Zhao Dazhe23

Affiliation:

1. Key Laboratory of Intelligent Computing in Medical Image (MIIC), Ministry of Education, Shenyang, Liaoning 110169, China

2. Key Laboratory of Medical Image Computing (MIC), Shenyang, Liaoning 110169, China

3. School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning 110169, China

Abstract

Image segmentation is still an open problem especially when intensities of the objects of interest are overlapped due to the presence of intensity inhomogeneities. A bias correction embedded level set model is proposed in this paper where inhomogeneities are estimated by orthogonal primary functions. First, an inhomogeneous intensity clustering energy is defined based on global distribution characteristics of the image intensities, and membership functions of the clusters described by the level set function are then introduced to define the data term energy of the proposed model. Second, a regularization term and an arc length term are also included to regularize the level set function and smooth its zero-level set contour, respectively. Third, the proposed model is extended to multichannel and multiphase patterns to segment colorful images and images with multiple objects, respectively. Experimental results and comparison with relevant models demonstrate the advantages of the proposed model in terms of bias correction and segmentation accuracy on widely used synthetic and real images and the BrainWeb and the IBSR image repositories.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3