Development and Validation of an Immune-Related Prognostic Signature for Ovarian Cancer Based on Weighted Gene Coexpression Network Analysis

Author:

An Yuanyuan1,Yang Qing1ORCID

Affiliation:

1. Gynecology Department in Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China

Abstract

Background. Ovarian cancer is one of the most lethal diseases of women. The prognosis of ovarian cancer patients was closely correlated with immune cell expression and immune responses. Therefore, it is important to identify a robust prognostic signature, which correlates not only with prognoses but also with immune responses in ovarian cancer, thus, providing immune-related patient therapies. Methods. The weighted gene coexpression network analysis (WGCNA) was used to identify candidate genes correlated with ovarian cancer prognoses. Univariate and multivariate Cox regression analyses were used to construct the prognostic signature. The Kaplan-Meier method was used to predict survival, and the immune-related bioinformatics analysis was performed using the R software. The relationship between the signature and clinical parameters was analyzed with the GraphPad Prism 7 and SPSS software. Results. Gene expression from The Cancer Genome Atlas dataset was used to perform the WGCNA analysis, and candidate prognostic-related genes in patients with ovarian cancer were identified. According to the Cox regression analysis, the prognostic signature was constructed, which divided patients into two groups. The high-risk group showed the least favorable prognosis. Three independent cohorts from the Gene Expression Omnibus (GEO) database were used for the validation studies. According to the immune analyses, the GEO database signatures were significantly correlated with the immune statuses of ovarian cancer patients. By analyzing the combination of the prognostic signature and total mutational burden (TMB), ovarian cancer patients were divided into four groups. In these groups, memory B cell, resting memory CD4 T cell, M2 macrophage, resting mast cell, and neutrophil were found with significant distinctions among these groups. Conclusions. This novel signature predicted the prognosis of ovarian cancer patients precisely and independently and showed significant correlations with immune responses. Therefore, this prognostic signature could indicate targeted immunotherapies for ovarian cancer patients.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3