Fuzzy Structural Analysis of a Tuned Mass Damper Subject to Random Vibration

Author:

Marano Giuseppe Carlo1,Morrone Emiliano1,Quaranta Giuseppe1,Trentadue Francesco1

Affiliation:

1. Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile (DIASS), Politecnico di Bari, Viale del Turismo 8, 74100 Taranto, Italy

Abstract

The uncertainty is a typical feature of each human activity since the greatest part of the information is always affected by a sure level of scattering. Different methodologies which deal with the uncertainty of the real problems exist. The principal aim of this paper is to present an innovative hybrid approach which combines fuzzy and stochastic theories in facing the structural analysis of a tuned mass damper subject to a dynamic random load, modelled by a modulated filtered white noise. In this work the parameters involved in the structural analysis will be considered uncertain and supposed fuzzy sets to take into account the effects of lexical and informal uncertainties which cannot be studied in a probabilistic way. The system analysis is conducted by means of -level optimization technique. Successively, a numerical example is presented to show the effectiveness of the proposed procedure. Moreover, a sensitivity analysis is performed to expose the variation of the structural response membership function considering different input values. Finally, a comparison between the response nominal value and the fuzzificated one is proposed to obtain a structural amplification factor.

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3