An Integrated Framework for Mapping Nationwide Daily Temperature in China

Author:

Zhong Shaobo12ORCID,Ye Xinlan3ORCID,Wang Mingxing3ORCID,Mei Xin3ORCID,Song Dunjiang4ORCID,Wang Wenhui3ORCID

Affiliation:

1. Urban Construction School, Beijing City University, Beijing 10083, China

2. Institute of Urban Systems Engineering, Beijing Academy of Science and Technology, Beijing 100035, China

3. Faculty of Resources and Environment Science, Hubei University, Wuhan, China

4. Institute of Science and Development, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Air temperature (Ta) is an essential parameter for science research and engineering practice. While the traditional site-based approach is only able to obtain observations in limited and discrete locations, satellite remote sensing is promising to retrieve some environmental variables with spatially continuous coverage. Nowadays, land surface temperature (Ts) measurements can be obtained from some satellite sensors (e.g., MODIS), further enabling us to estimate Ta in view of the relationship between Ta and Ts. In this article, we proposed a two-phase integrated framework to estimate daily mean Ta nationwide. In the first phase, multivariate linear regression models were fitted between site-based observations of daily mean air temperature (Ta-mean) and MODIS land surface temperature products (including Terra day: TMOD-day, Terra night: TMOD-night, Aqua day: TMYD-day, and Aqua night: TMYD-night) conditional on some covariates of environmental factors. The fitted models were then used to predict Ta-mean from those covariates at unobserved locations. The predicted Ta-mean were looked on as stochastic variables, and their distributions were also obtained. In the second phase, Bayesian maximum entropy (BME) methods were used to produce spatially continuous maps of Ta-mean taking the meteorological station observations as hard data and the predicted Ta-mean in the first phase as soft data. It is shown that the proposed approach is promising to improve the interpolation accuracy significantly, comprehensively considering the prior knowledge and the context of space variability and correlation, which will enable it to compile spatially continuous air temperature products with higher accuracy.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3