Adaptive Reward Allocation for Participatory Sensing

Author:

Connolly Martin1ORCID,Dusparic Ivana2,Iosifidis Georgios2,Bouroche Melanie2ORCID

Affiliation:

1. Department of Information Systems, Cork Institute of Technology, Ireland

2. School of Computer Science & Statistics, Trinity College Dublin, Ireland

Abstract

Participatory sensing is a paradigm through which mobile device users (or participants) collect and share data about their environments. The data captured by participants is typically submitted to an intermediary (the service provider) who will build a service based upon this data. For a participatory sensing system to attract the data submissions it requires, its users often need to be incentivized. However, as an environment is constantly changing (for example, an accident causing a buildup of traffic and elevated pollution levels), the value of a given data item to the service provider is likely to change significantly over time, and therefore an incentivization scheme must be able to adapt the rewards it offers in real-time to match the environmental conditions and current participation rates, thereby optimizing the consumption of the service provider’s budget. This paper presents adaptive reward allocation (ARA), which uses the Lyapunov Optimization method to provide adaptive reward allocation that optimizes the consumption of the service provider’s budget. ARA is evaluated using a simulated participatory sensing environment with experimental results showing that the rewards offered to participants are adjusted so as to ensure that the data captured matches the dynamic changes occurring in the sensing environment and takes the response rate into account while also seeking to optimize budget consumption.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3