Spectral Element Numerical Investigation of Flow between Three Cylinders in an Equilateral-Triangular Arrangement with Different Spacing Distances

Author:

Bao Zhenzhong1ORCID,Qin Guoliang1ORCID,He Wenqiang1,Wang Yazhou1

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shanxi 710049, China

Abstract

Two-dimensional incompressible Navier-Stokes equations are numerically solved using the high resolution spectral element method at Reynolds number 200. The flow between three cylinders in an equilateral-triangular arrangement is investigated. The center-to-center spacing distance ratio between two circular cylinders is varied from 1.5 to 12. Present numerical results show that the flow patterns and force characteristics are the result of the combined effects of Reynolds number, spacing distance, configuration arrangement, and incident angle. For the small spacing distance ratio of 1.5, the well-known biased flow phenomenon in the gap of downstream cylinders is found. And the biased flow is bistable in our study but not monostable. A small spacing distance means lower Strouhal number, drag, and root-mean-square lift coefficients. In the medium spacing distance ratio of 4.0, the suppressed effect of vortex shedding for the presence of the side-by-side downstream cylinders disappeared. Mean drag coefficients of downstream cylinders are basically identical to the value of flow past around a single circular cylinder. For the large spacing distance ratio of 8.0, the effects between three cylinders basically disappeared. The mean drag and lift coefficients, root-mean-square lift coefficients, and Strouhal number of three cylinders are essentially equivalent to those values of a single circular cylinder.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3