Affiliation:
1. Department of Computer, North China Electric Power University, Baoding, China
2. College of Information Science & Technology, Agricultural University of Hebei, Baoding, China
Abstract
The fault diagnosis method based on dissolved gas analysis (DGA) is of great significance to detect the potential faults of the transformer and improve the security of the power system. The DGA data of transformer in smart grid have the characteristics of large quantity, multiple types, and low value density. In view of DGA big data’s characteristics, the paper first proposes a new combined fault diagnosis method for transformer, in which a variety of fault diagnosis models are used to make a preliminary diagnosis, and then the support vector machine is used to make the second diagnosis. The method adopts the intelligent complementary and blending thought, which overcomes the shortcomings of single diagnosis model in transformer fault diagnosis, and improves the diagnostic accuracy and the scope of application of the model. Then, the training and deployment strategy of the combined diagnosis model is designed based on Storm and Spark platform, which provides a solution for the transformer fault diagnosis in big data environment.
Funder
National Natural Science Fund
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献