Affiliation:
1. School of Aeronautical Sciences, Hindustan Institute of Technology and Science, Chennai, India
2. Department of Mechanical Engineering, College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
Abstract
Hybrid composites made of natural and synthetic fibers are stronger, lighter, cheaper, biodegradable, and greener than conventional metals, and they are replacing conventional metals. The primary objective of the study was to examine the mechanical properties of interwoven hybrid composite laminates. Kevlar and glass fiber are used as reinforcement for this work. The fibers are woven together using various weaving techniques. 1 × 1, 3 × 3, and 5 × 5 weaving patterns are considered to explore the properties of the laminates. The composites are woven using a conventional handloom method. As a matrix, LY556 resin and HY951 hardener are combined at a ratio of 10 : 1. The composites are cured using compression molding. The cured composites are assessed for their tensile strength, flexural strength, compressive strength, interlaminar shear strength, impact strength, and fracture toughness. The highest tensile, compressive, and flexural strength were found in the 1 × 1 pattern, shear strength and fracture toughness were found in the 5 × 5 pattern, which finds applications in aerospace and defense sectors, and 3 × 3 dominated in impact strength; as a result, it can be used in bulletproof applications. At last, a scanning electron microscope (SEM) was used to visualize the matrix-reinforcement bonding. The microscopic images show the ripped-out fibers because of the tensile test. The shards in SEM are evident that impact force breaks the matrix elements in a brittle manner.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献