Detecting GPC3-Expressing Hepatocellular Carcinoma with L5 Peptide-Guided Pretargeting Approach: In Vitro and In Vivo MR Imaging Experiments

Author:

Li Weiyue12,Xiao Xiang1ORCID,Li Xiaodan1ORCID,Xu Yikai1,Ma Lichao1,Guo Liuji1,Yan Chenggong1,Wu Yuankui1ORCID

Affiliation:

1. Department of Medical Imaging Centre, Nanfang Hospital, Southern Medical University, Guangzhou, China

2. Department of Radiology, Shenzhen People’s Hospital, Shenzhen, China

Abstract

Objective. To investigate the potential of L5 peptide-guided pretargeting approach to identify GPC3-expressing hepatocellular carcinoma (HCC) using ultrasmall superparamagnetic iron oxide (USPIO) as the MR probe. Methods. Immunofluorescence with carboxyfluorescein- (FAM-) labeled L5 peptide was performed in HepG2 cells. Polyethylene glycol-modified USPIO (PEG-USPIO) and its conjugation with streptavidin (SA-PEG-USPIO) were synthesized, and their hydrodynamic diameters, zeta potential, T2 relaxivity, and cytotoxicity were measured. In vitro and in vivo two-step pretargeting MR imaging was performed on HepG2 cells and tumor-bearing mice after the administration of biotinylated L5 peptide (first step), followed by SA-PEG-USPIO (second step). Prussian blue staining was performed to assess iron deposition in tumors. Results. The high specificity of L5 peptide for GPC3 was demonstrated. Generation of SA-PEG-USPIO nanoparticles with good biocompatibility (an average hydrodynamic diameter of 35.97 nm and a zeta potential of −7.91 mV), superparamagnetism (R2 = 0.1039 × 103 mM−1s−1), and low toxicity was achieved. The pretargeting group showed more enhancement than the nonpretargeting group both in vitro (60% vs 20%, P<0.05) and in vivo (32% vs 6%, P<0.001). Substantial iron deposition was only observed in HepG2 cells and tumors in the pretargeting group. Conclusion. L5 peptide-guided, two-step pretargeting approach with USPIO as the MR imaging probe is a lucrative strategy to specifically identify GPC3-expressing HCC.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3