MSC Senescence-Related Genes Are Associated with Myeloma Prognosis and Lipid Metabolism-Mediated Resistance to Proteasome Inhibitors

Author:

Cao Yang-Jia12ORCID,Zheng Yan-Hua3ORCID,Li Qing1,Zheng Jin4ORCID,Ma Li-Tian45ORCID,Zhao Can-Jun4ORCID,Li Tian6ORCID

Affiliation:

1. State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China

2. Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

3. Department of Hematology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China

4. Department of Traditional Chinese Medicine, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China

5. Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China

6. School of Basic Medicine, Fourth Military Medical University (Air Force Medical University), 169 Changle West Road, Xi’an, China

Abstract

Background. Complex carcinogenic mechanisms and the existence of tumour heterogeneity in multiple myeloma (MM) prevent the most commonly used staging system from effectively interpreting the prognosis of patients. Since the microenvironment plays an important role in driving tumour development and MM occurs most often in middle-aged and elderly patients, we hypothesize that ageing of bone marrow mesenchymal stem cells (BM-MSCs) may be associated with the progression of MM. Methods. In this study, we collected the transcriptome data on MM from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Differentially expressed genes in both senescent MSCs and MM tumour cells were considered relevant damaged genes. GO and KEGG analyses were applied for functional evaluation. A PPI network was constructed to identify hub genes. Subsequently, we studied the damaged genes that affected the prognosis of MM. Least absolute shrinkage and selection operator (lasso) regression was used to identify the most important features, and a risk model was created. The reliability of the risk model was evaluated with the other 3 GEO validation cohorts. In addition, ROC analysis was used to evaluate the novel risk model. An analysis of immune checkpoint-related genes, tumour immune dysfunction and exclusion (TIDE), and immunophenotypic scoring (IPS) were performed to assess the immune status of risk groups. pRRophetic was utilized to predict the sensitivity to administration of chemotherapeutic agents. Results. We identified that MAPK, PI3K, and p53 signalling pathways were activated in both senescent MSCs and tumour cells, and we also located hub genes. In addition, we constructed a 14-gene prognostic risk model, which was analysed with the ROC and validated in different datasets. Further analysis revealed significant differences in predicted risk values across the International Staging System (ISS) stage, sex, and 1q21 copy number. A high-risk group with higher immunogenicity was predicted to have low proteasome inhibitor sensitivity and respond poorly to immunotherapy. Lipid metabolism pathways were found to be significantly different between high-risk and low-risk groups. A nomogram was created by combining clinical data, and the optimization model was further improved. Finally, real-time qPCR was used to validate two bortezomib-resistant myeloma cell lines, and the test confirmed that 10 genes were detected to be expressed in resistant cell lines with the same trend as in the high-risk cohort compared to nonresistant cells. Conclusion. Fourteen genes related to ageing in BM-MSCs were associated with the prognosis of MM, and by combining this genotypic information with clinical factors, a promising clinical prognostic model was established.

Funder

Social Talent Fund Funding Program Project

Publisher

Hindawi Limited

Subject

Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3