Investigation of Effectiveness of Shuffled Frog-Leaping Optimizer in Training a Convolution Neural Network

Author:

Baseri Saadi Soroush1ORCID,Tataei Sarshar Nazanin2ORCID,Sadeghi Soroush3ORCID,Ranjbarzadeh Ramin4ORCID,Kooshki Forooshani Mersedeh5ORCID,Bendechache Malika4ORCID

Affiliation:

1. Faculty of Medicine, Catholic University of Leuven (KU Leuven), Leuven, Belgium

2. Department of Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran

3. School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

4. School of Computing, Faculty of Engineering and Computing, Dublin City University, Dublin, Ireland

5. Department of Electronics and Telecommunications, Polytechnic University, Turin, Italy

Abstract

One of the leading algorithms and architectures in deep learning is Convolution Neural Network (CNN). It represents a unique method for image processing, object detection, and classification. CNN has shown to be an efficient approach in the machine learning and computer vision fields. CNN is composed of several filters accompanied by nonlinear functions and pooling layers. It enforces limitations on the weights and interconnections of the neural network to create a good structure for processing spatial and temporal distributed data. A CNN can restrain the numbering of free parameters of the network through its weight-sharing property. However, the training of CNNs is a challenging approach. Some optimization techniques have been recently employed to optimize CNN’s weight and biases such as Ant Colony Optimization, Genetic, Harmony Search, and Simulated Annealing. This paper employs the well-known nature-inspired algorithm called Shuffled Frog-Leaping Algorithm (SFLA) for training a classical CNN structure (LeNet-5), which has not been experienced before. The training method is investigated by employing four different datasets. To verify the study, the results are compared with some of the most famous evolutionary trainers: Whale Optimization Algorithm (WO), Bacteria Swarm Foraging Optimization (BFSO), and Ant Colony Optimization (ACO). The outcomes demonstrate that the SFL technique considerably improves the performance of the original LeNet-5 although using this algorithm slightly increases the training computation time. The results also demonstrate that the suggested algorithm presents high accuracy in classification and approximation in its mechanism.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3