Affiliation:
1. Faculty of Civil Engineering, Damascus University, Damascus, Syria
Abstract
The development of geospatial technologies has opened a new era in terms of data collection techniques and analysis procedures. Digital elevation models as 3D visualization of the Earth’s surface have many mapping and spatial analysis applications. The primary terrain factors derived from the raster dataset are usually less critical than secondary ones, e.g., ruggedness index, which plays a vital role in engineering, hydrological information derivation, and geomorphological processes. Surface ruggedness is a significant predictor of topographic heterogeneity by calculating the absolute value of elevation differences within a specified neighborhood surrounding a central pixel. The current study investigates the impacts of various topographic metrics obtained from a digital elevation model on characterizing terrain ruggedness utilizing stepwise principal component analysis. This popular multivariate statistical technique is applied to conduct a comprehensive assessment and treat the information redundancy of terrain parameters. Simultaneously, the standard deviation of elevation is also proposed as an alternative approach to quantifying topographic ruggedness. Besides, quantitative and qualitative method is espoused to validate the algorithms and compare their capabilities to the previously introduced models in the literature. The findings have shown that principal component analysis provides superior performance against other models. Furthermore, they indicated that the standard deviation of elevation could be used instead of the available ones.
Subject
Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献