Quantifying Topographic Ruggedness Using Principal Component Analysis

Author:

Habib Maan1ORCID

Affiliation:

1. Faculty of Civil Engineering, Damascus University, Damascus, Syria

Abstract

The development of geospatial technologies has opened a new era in terms of data collection techniques and analysis procedures. Digital elevation models as 3D visualization of the Earth’s surface have many mapping and spatial analysis applications. The primary terrain factors derived from the raster dataset are usually less critical than secondary ones, e.g., ruggedness index, which plays a vital role in engineering, hydrological information derivation, and geomorphological processes. Surface ruggedness is a significant predictor of topographic heterogeneity by calculating the absolute value of elevation differences within a specified neighborhood surrounding a central pixel. The current study investigates the impacts of various topographic metrics obtained from a digital elevation model on characterizing terrain ruggedness utilizing stepwise principal component analysis. This popular multivariate statistical technique is applied to conduct a comprehensive assessment and treat the information redundancy of terrain parameters. Simultaneously, the standard deviation of elevation is also proposed as an alternative approach to quantifying topographic ruggedness. Besides, quantitative and qualitative method is espoused to validate the algorithms and compare their capabilities to the previously introduced models in the literature. The findings have shown that principal component analysis provides superior performance against other models. Furthermore, they indicated that the standard deviation of elevation could be used instead of the available ones.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3