Modeling Cholera Epidemiology Using Stochastic Differential Equations

Author:

Iddrisu Wahab A.1ORCID,Iddrisu Inusah2,Iddrisu Abdul-Karim2

Affiliation:

1. Department of Mathematics and Statistics, Ghana Communication Technology University, Accra, Ghana

2. Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana

Abstract

In this study, we extend Codeço’s classical SI-B epidemic and endemic model from a deterministic framework into a stochastic framework. Then, we formulated it as a stochastic differential equation for the number of infectious individuals I t under the role of the aquatic environment. We also proved that this stochastic differential equation (SDE) exists and is unique. The reproduction number, R 0 , was derived for the deterministic model, and qualitative features such as the positivity and invariant region of the solution, the two equilibrium points (disease-free and endemic equilibrium), and stabilities were studied to ensure the biological meaningfulness of the model. Numerical simulations were also carried out for the stochastic differential equation (SDE) model by utilizing the Euler-Maruyama numerical method. The method was used to simulate the sample path of the SI-B stochastic differential equation for the number of infectious individuals I t , and the findings showed that the sample path or trajectory of the stochastic differential equation for the number of infectious individuals I t is continuous but not differentiable and that the SI-B stochastic differential equation model for the number of infectious individuals I t fluctuates inside the solution of the SI-B ordinary differential equation model. Another significant feature of our proposed SDE model is its simplicity.

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3