The Breakage-Fusion-Bridge Cycle Producing MLL Amplification in a Case of Myelodysplastic Syndrome

Author:

Ta Lan1,Zordan Adrian1,Mercer Bruce1ORCID,Campbell Lynda J.12ORCID,MacKinnon Ruth N.12ORCID

Affiliation:

1. Victorian Cancer Cytogenetics Service, St Vincent’s Hospital, P.O. Box 2900, Fitzroy, VIC 3065, Australia

2. Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia

Abstract

Telomere loss may lead to chromosomal instability via the breakage-fusion-bridge (BFB) cycle which can result in genetic amplification and the formation of ring and dicentric chromosomes. This cycle continues until stable chromosomes are formed. The case of a 72-year-old female with refractory anaemia with excess blasts type 2 illustrates these events. Conventional cytogenetics produced a complex karyotype which included unstable abnormalities of chromosomes 11, 12, and 15. Fluorescence in situ hybridization (FISH) analyses including multicolor-FISH (M-FISH) and multicolor-banding (M-BAND) revealed multiple clonal populations with 5 copies of MLL on either a ring chromosome composed entirely of chromosome 11 material or a derivative chromosome composed of chromosomes 11, 12, and 15. The FISH results also clarified the likely evolution of the karyotypic complexity. The simplest cell line contained a dic(12;15) in addition to copy number aberrations that are typical of MDS or AML. As the disease progressed, a ring 11 was formed. Subsequently, the ring 11 appears to have unwound and inserted itself into the dic(12;15) chromosome followed by an inversion of the derivative chromosome, producing a der(11;15;12). Telomeric loss and BFB cycles appear to have played an important role in the chromosomal rearrangements and clonal evolution demonstrated in the karyotype.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3