Affiliation:
1. College of Materials Science and Engineering, Guangxi University, Nanning, Guangxi 530004, China
Abstract
The phase stability, mechanical, electronic, and thermodynamic properties of In-Zr compounds have been explored using the first-principles calculation based on density functional theory (DFT). The calculated formation enthalpies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristics and there is a common hybridization between In-p and Zr-d states near the Fermi level. Elastic properties have been taken into consideration. The calculated results on the ratio of the bulk to shear modulus (B/G) validate that InZr3has the strongest deformation resistance. The increase of indium content results in the breakout of a linear decrease of the bulk modulus and Young’s modulus. The calculated theoretical hardness ofα-In3Zr is higher than the other In-Zr compounds.
Funder
National Natural Science Foundation of China