Organic Pollutants Removal from Petroleum Refinery Wastewater with Nanotitania Photocatalyst and UV Light Emission

Author:

Saien Javad1,Shahrezaei Fatemeh2

Affiliation:

1. Department of Applied Chemistry, Bu-Ali Sina University, Hamedan 65174, Iran

2. Academic Center for Education, Culture and Research (ACECR), Kermanshah Branch, Kermanshah, Iran

Abstract

A real petroleum refinery wastewater, containing a range of aliphatic and aromatic organic compounds, was treated using nanotitania particles, as the photocatalyst in UV/TiO2process. Samples were collected from the inlet point of the biological treatment unit. A conic-shape, circulating, and upward mixing reactor, without dead zone, was employed. The light source was an immersed mercury UV lamp (400 W, 200–550 nm). Optimal suspended catalyst concentration, fluid pH, and temperature were obtained at amounts of near 100 mg·L−1, 3 and 45°C, respectively. A maximum reduction in chemical oxygen demand (COD) of more than 78% was achieved after about 120 min and, hence, 72% after only 90 min. Significant pollutant degradation was also relevant under other conditions. The identification analysis of the organic pollutants, provided by means of a GC/MS, equipped with headspace injection technique, showed that different petroleum compounds were degraded with high efficiencies.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3