Affiliation:
1. Central Department of Computer Science and Information Technology, Tribhuvan University, 44600 Kathmandu, Nepal
2. School of Engineering and Technology, Central Queensland University, Rockhampton 4701, QLD, Australia
3. Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, VIC, Australia
Abstract
COVID-19 is one of the deadliest viruses, which has killed millions of people around the world to this date. The reason for peoples’ death is not only linked to its infection but also to peoples’ mental states and sentiments triggered by the fear of the virus. People’s sentiments, which are predominantly available in the form of posts/tweets on social media, can be interpreted using two kinds of information: syntactical and semantic. Herein, we propose to analyze peoples’ sentiment using both kinds of information (syntactical and semantic) on the COVID-19-related twitter dataset available in the Nepali language. For this, we, first, use two widely used text representation methods: TF-IDF and FastText and then combine them to achieve the hybrid features to capture the highly discriminating features. Second, we implement nine widely used machine learning classifiers (Logistic Regression, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, Decision Trees, Random Forest, Extreme Tree classifier, AdaBoost, and Multilayer Perceptron), based on the three feature representation methods: TF-IDF, FastText, and Hybrid. To evaluate our methods, we use a publicly available Nepali-COVID-19 tweets dataset, NepCov19Tweets, which consists of Nepali tweets categorized into three classes (Positive, Negative, and Neutral). The evaluation results on the NepCOV19Tweets show that the hybrid feature extraction method not only outperforms the other two individual feature extraction methods while using nine different machine learning algorithms but also provides excellent performance when compared with the state-of-the-art methods.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献