Feedforward Neural Network for Force Coding of an MRI-Compatible Tactile Sensor Array Based on Fiber Bragg Grating

Author:

Saccomandi Paola1,Oddo Calogero Maria2,Zollo Loredana3ORCID,Formica Domenico3,Romeo Rocco Antonio3,Massaroni Carlo1,Caponero Michele Arturo4,Vitiello Nicola2ORCID,Guglielmelli Eugenio3,Silvestri Sergio1,Schena Emiliano1

Affiliation:

1. Research Unit of Measurements and Biomedical Instrumentation, Center for Integrated Research, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy

2. The BioRobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy

3. Research Unit of Biomedical Robotics and Biomicrosystems, Center for Integrated Research, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy

4. The Photonics Micro- and Nanostructures Laboratory, Research Centre of Frascati, ENEA, Via Enrico Fermi 45, 00044 Frascati, Italy

Abstract

This work shows the development and characterization of a fiber optic tactile sensor based on Fiber Bragg Grating (FBG) technology. The sensor is a 3×3 array of FBGs encapsulated in a PDMS compliant polymer. The strain experienced by each FBG is transduced into a Bragg wavelength shift and the inverse characteristics of the sensor were computed by means of a feedforward neural network. A 21 mN RMSE error was achieved in estimating the force over the 8 N experimented load range while including all probing sites in the neural network training procedure, whereas the median force RMSE was 199 mN across the 200 instances of a Monte Carlo randomized selection of experimental sessions to evaluate the calibration under generalized probing conditions. The static metrological properties and the possibility to fabricate sensors with relatively high spatial resolution make the proposed design attractive for the sensorization of robotic hands. Furthermore, the proved MRI-compatibility of the sensor opens other application scenarios, such as the possibility to employ the array for force measurement during functional MRI-measured brain activation.

Funder

National Institute for Insurance against Industrial Injuries

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3