Automatic Breast Tumor Diagnosis in MRI Based on a Hybrid CNN and Feature-Based Method Using Improved Deer Hunting Optimization Algorithm
Author:
Affiliation:
1. College of Computer, Weinan Normal University, Weinan, Shaanxi, China
2. Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract
Publisher
Hindawi Limited
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Link
http://downloads.hindawi.com/journals/cin/2021/5396327.pdf
Reference28 articles.
1. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;H. Sung;CA: A Cancer Journal For Clinicians,2021
2. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI
3. Breast Cancer Segmentation From Thermal Images Based on Chaotic Salp Swarm Algorithm
4. Automatic MRI Breast tumor Detection using Discrete Wavelet Transform and Support Vector Machines
5. Entropy-based breast cancer detection in digital mammograms using world cup optimization algorithm;R. Navid;International Journal of Swarm Intelligence Research (IJSIR),2020
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Survey of Computer‐Aided Diagnosis Systems for Breast Cancer Detection;Metaheuristics for Machine Learning;2024-03-29
2. Leveraging feature subset selection with deer hunting optimizer based deep learning for anomaly detection in secure cloud environment;Multimedia Tools and Applications;2024-01-20
3. Artificial intelligence in radial diagnostics of breast cancer;Scientific Bulletin of the Omsk State Medical University;2023-12-15
4. Feature extraction from MR images for detection of brain and breast tumors through mathematical modeling;Biomedical Signal Processing and Control;2023-09
5. Federated learning aided breast cancer detection with intelligent Heuristic-based deep learning framework;Biomedical Signal Processing and Control;2023-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3