The Dynamic Damage Mechanisms and Failure Modes of Coal-Rock Masses under the Action of High Order P-Waves

Author:

Li Feng12ORCID,Bi Mingxin2,Tian Jing2,Fang Shuhao2

Affiliation:

1. Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 100083, China

2. School of Resource and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

In the process of deep mining, the coal-rock masses were subjected to different types’ disturbance of dynamic loading, and they propagated to the depth of coal and rock in the forms of stress waves. It has been determined that coal-rock masses mainly show shear-compression failures under static pressure. However, under dynamic loading, they had consistently demonstrated crashing or splitting failure, which showed strong dynamic mechanical characteristics. Therefore, the propagation and interaction of stress waves have great effect for the dynamical damage of coal-rock masses. The current research regarding the dynamic mechanical characteristics of coal-rock masses is still in the qualitative analysis stage, with the dynamic damage mechanism and failure modes remaining unclear. Based on the propagation characteristics of a plane strain and cylindrical wave control equations, this paper obtained a cylindrical wave propagation frequency equation and established a dynamic calculation model for the radial, axial, and shear stresses under high order P-waves. We have noticed, most surprisingly, that the amplitude directions of the radial and axial stress waves were almost opposite, with the amplitude values being basically the same when the vibration remained stable. And the vibration amplitude of shear stress wave was found to be the largest. Therefore, the coal-rock masses generally experienced tensile and shear failures under high order P-waves. The following results can be obtained: tensile failure easily occurred to the surface or axis of cylindrical coal-rock masses when there was no confining pressure, and the coal-rock masses generally experienced tensile-shear failures when confining pressure was present. And we found that the vibration amplitudes and dimensionless radius (r/R) were in approximately the −0.5 power relationship, and the dimensionless wave numbers (kR), dimensionless frequency (wR), and the wave length of stress waves propagating in cylindrical coal-rock masses were mainly within 85, (0.1~1.8) × 105, and 0.24R~1.08R respectively.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3