A Novel Maximum Flow Algorithm with Neural Network for Time-Varying Wastage Networks

Author:

Zhang Baowen1,Jiang Kaiwen1ORCID,Huang Wei1

Affiliation:

1. School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, China

Abstract

This paper introduces a time-varying wastage maximum flow problem (TWMFP) and proposes a time-flow neural network (TFNN) for solving the TWMFPs. The time-varying wastage maximum flow problem is concerned with finding the maximum flow in a network with time-varying arc capacities and additive flow losses on the arcs. This problem has multiple applications in transportation, communication, and financial network. For example, solving the maximum traffic flow of the transportation network and the maximum profit of the financial network. Unlike traditional neural network algorithms, the proposed TFNN does not require any training by means of its time-flow mechanism. The time-flow mechanism is realized by each active neuron sending pulses to its successor neurons. In order to maximize the network flow, the proposed TFNN can be divided into two parts: path-pulse neural networks (PPNNs) and subnet-flow neural networks (SFNN). PPNN is to generate two subnet sets (viz. with wastage arcs and without), and SFNN is to find the maximum flow value of each subnet. The subnet computing strategy of the proposed algorithm greatly improves the solution accuracy of TWMFPs. Theoretical analysis and experiments have proved the effectiveness of TFNN. The experiment results of the transportation network (viz. New York Road) show that the proposed TFNN has better performance (viz. error rate and computational time) compared to classical algorithms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3