Affiliation:
1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. Yantai Zhenghai Hi-Tech Co., Ltd., Yantai 264000, China
Abstract
Data augmentation has become a hot topic in the field of mechanical intelligent fault diagnosis. It can expand the limited training dataset by generating simulated samples, but there is still no effective method augmenting the resolution of low resolution sample. In this paper, a simple algorithm, namely, efficient subpixel convolutional neural network (ESPCN), is proposed to solve this deficiency. The ESPCN model performs the arrange operation on the raw low resolution data through the subpixel layer and outputs the result of four-channel multifeature maps. Then, the sample resolution is increased to four times compared with the raw low resolution sample. Finally, the generated high resolution dataset is employed to train the stacked autoencoders (SAE) for fault classification, and the raw high resolution dataset is used for testing. Two fault diagnosis cases with different sample dimensions and rotating speeds are set up to simulate the low resolution situation, and the experimental results verify the feasibility of the proposed algorithm.
Funder
Natural Science Foundation of Shandong Province
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献