Experimental Investigations of Nano Finishing Process on Nickel-Free Austenitic Stainless Steel by Grey Relational and Principal Component Analysis

Author:

Kathiresan S.1,Anbuchezhiyan G.2ORCID,Karthikeyan S.3,Palani Kumaran4ORCID

Affiliation:

1. Department of Mechanical Engineering, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai 600127, India

2. Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India

3. Department of Mechanical Engineering, CEG Campus, Anna University, Chennai 600025, Tamil Nadu, India

4. Department of Mechanical Engineering, College of Engineering, Wolaita Sodo University, Wolaita Sodo, P.O. Box 138, Ethiopia

Abstract

The nano surface roughness of metallic materials is important in engineering and medical fields for specific applications. Magneto rheological abrasive flow finishing (MRAFF) process was performed on nickel-free austenitic stainless workpieces in order to obtain surface roughness at the nano level and also to forecast the performance of the MRAFF process in terms of responses such as surface roughness (SR) and material removal rate (MRR). These two responses are affected by process factors such as hydraulic pressure, current to the electromagnet, and the number of cycles performed during the machining process. The design of experiments (DOE) was used to determine the contributions of process parameters to output responses. The techniques of grey relational analysis (GRA) and principal component analysis (PCA) were used in these experimental investigations to discover the process factors that minimise the final Ra and maximise MRR. Through the DOE, a minimum SR of 63.24 nm and a maximum MRR of 2.34 mg/sec were obtained on the samples for the combination of 30 bar pressure, 6 A current, and 300 number of cycles.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3