Elucidating Template‐To‐Precursor Interactions for Synthesizing Highly Active Single Atomic Fe─N─C Electrocatalysts for the Oxygen Reduction Reaction

Author:

Kim Dong-Gun,Park Subin,Choi Yuna,Lee Eun-Hee,Cho Yoonbin,Jung Jae Young,Kim Nam DongORCID,Kim PilORCID,Yoo Sung JongORCID

Abstract

Iron‐ and nitrogen‐doped carbon (Fe─N─C) catalysts have garnered attention owing to their high oxygen reduction reaction (ORR) activity, which is comparable to that of Pt/C catalysts. Among the various methods for designing Fe─N─C catalysts, the use of templates has been emphasized as a means to create hierarchical porous structures. This strategy has enabled the achievement of high ORR activity. In this study, we propose a method for manufacturing a catalyst with high ORR activity by maximizing the interactions between commercial silica templates and catalyst precursors. By manipulating the charge on the commercial silica surface and adjusting the pH of the dispersion, the catalyst fabricated through these methods exhibited superior ORR activity compared to Pt/C and recently reported nonprecious metal catalysts. Through diverse physicochemical and electrochemical analyses, we confirmed that this activity stems from the effectively generated hierarchical porous structure and the resulting high density of Fe─N active sites. This catalyst exhibited a kinetic current density of over 2.73 mA cm−2, which is more than double that of platinum and displayed a high ORR mass activity of 4.49 mA mg−1. This strategy holds significant potential for application in various carbon‐based materials, paving the way for the development of highly efficient electrochemical energy devices.

Funder

National Research Foundation of Korea

Korea Institute of Science and Technology

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3