A Dual-Hierarchy Synchronization Method for Signal Preambles with High Detection Rates for Satellite-Based ADS-B Receivers with Different Sensitivities

Author:

Jian Xinhui1ORCID,Zhang Xuejun1ORCID,Ma Jianxiang2ORCID,Zhang Weidong3ORCID

Affiliation:

1. School of Electronic Information Engineering, Beihang University, Beijing, China

2. Big Data Division, Innovation Institute (Chengdu) of Beihang University, Chengdu, China

3. School of Cyber Science and Technology, Beihang University, Beijing, China

Abstract

Existing methods are unable to achieve high detection rates and low false alarm rates of satellite-based Automatic Dependent Surveillance-Broadcast (ADS-B) signal preambles at extremely low signal-to-noise ratios (SNRs) using limited on-star resources. In this paper, a dual-hierarchy synchronization method is proposed, including a first-level coarse synchronization and a second-level fine synchronization. The coarse synchronization process involves three steps: (1) detection of unknown signals, (2) soft decision, and (3) adaptive interval output. The first step introduces the threshold (TMSED) of the minimum signal energy to be detected to guarantee a high detection rate. In the soft decision step, a value (SV) designed to improve the robustness of the system curbs false detection caused by noise interference. In the last step, the coarse synchronization interval radius (r) is mapped out according to the SNR to reduce resource consumption. The fine synchronization process is based on the coarse synchronization output, and the correlation peak is calculated to complete the synchronization of the signal preambles. The results show that the proposed method achieves a high detection rate of 96% at an extremely low SNR using a low sampling frequency of 10 MHz. Furthermore, the adjustment of TMSED allows this method to be applied to ADS-B receivers with different sensitivities. The comprehensive performance of this method to achieve high detection rates and acceptable false alarm rates at extremely low SNRs with limited on-star resources is verified by final simulations to be superior to other methods.

Funder

Ministry of Industry and Information Technology of the People's Republic of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3