Mathematical Analysis of Optimal Operating Conditions in Heating Systems

Author:

Kong Chan1,Sun Yong1,Zhang Hongxi1,Shi Yongjiang1ORCID

Affiliation:

1. College of Energy and Environmental Engineering, Hebei Institute of Architecture and Civil Engineering, Zhangjiakou 075000, Hebei, China

Abstract

With changes in the outdoor air temperature, the heat consumption of buildings also changes. Timely adjustment of the heating systems to ensure optimal operating conditions is extremely significant to save energy. In this study, the operation conditions of a heating system were analyzed numerically, and the existence, uniqueness, and stability of the optimal operation conditions of the heating system were proved. An operation optimization model that could obtain the optimal operation conditions was also established, and the correctness of the model was verified experimentally. Experimental results showed that when the flow rate was 0.606 m3/h, the supply water temperature was 67.13°C, water return temperature was 65.90°C, and the pump consumed the least amount of electricity. The experimental results and model calculation results showed that the operating cost is lower when the system flow rate is low and the supply water temperature is high under the same heat dissipation and indoor temperature.

Funder

Renewable Energy Heating Engineering Research Center

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3