An M-QAM Signal Modulation Recognition Algorithm in AWGN Channel

Author:

Ali Ahmed K.1ORCID,Erçelebi Ergun1

Affiliation:

1. Department of Electric and Electronic Engineering, Gaziantep University, Gaziantep 27310, Turkey

Abstract

Computing the distinct features from input data, before the classification, is a part of complexity to the methods of automatic modulation classification (AMC) which deals with modulation classification and is a pattern recognition problem. However, the algorithms that focus on multilevel quadrature amplitude modulation (M-QAM) which underneath different channel scenarios is well detailed. A search of the literature revealed that few studies were performed on the classification of high-order M-QAM modulation schemes such as 128-QAM, 256-QAM, 512-QAM, and 1024-QAM. This work focuses on the investigation of the powerful capability of the natural logarithmic properties and the possibility of extracting higher order cumulant’s (HOC) features from input data received raw. The HOC signals were extracted under the additive white Gaussian noise (AWGN) channel with four effective parameters which were defined to distinguish the types of modulation from the set: 4-QAM∼1024-QAM. This approach makes the classifier more intelligent and improves the success rate of classification. The simulation results manifest that a very good classification rate is achieved at a low SNR of 5 dB, which was performed under conditions of statistical noisy channel models. This shows the potential of the logarithmic classifier model for the application of M-QAM signal classification. furthermore, most results were promising and showed that the logarithmic classifier works well under both AWGN and different fading channels, as well as it can achieve a reliable recognition rate even at a lower signal-to-noise ratio (less than zero). It can be considered as an integrated automatic modulation classification (AMC) system in order to identify the higher order of M-QAM signals that has a unique logarithmic classifier to represent higher versatility. Hence, it has a superior performance in all previous works in automatic modulation identification systems.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3