Characterization of Human Colorectal Cancer MDR1/P-gp Fab Antibody

Author:

Zhang Xuemei12,Xiao Gary Guishan3,Gao Ying2

Affiliation:

1. The Medical College of Dalian University, Dalian Economic & Technical Development Zone, Dalian 116622, China

2. Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian 116044, China

3. Departments of Medicine and Medical Microbiology, Creighton University, 601 N 30th Street, Omaha, NE 68131, USA

Abstract

In this study, the peptide sized 21 kDa covering P-gp transmembrane region was first prepared for generating a novel mouse monoclonal antibody Fab fragment with biological activity against multiple drug resistance protein P-gp21by phage display technology. Phage-displayed antibody library prepared from mice spleen tissues was selected against the recombinant protein P-gp21with five rounds of panning. A number of clones expressing Fab bound to P-gp21, showing neutralized activity in vitro, were isolated and screened by enzyme-linked immunosorbent assay based on its recognition properties to P-gp21and human colorectal cancer tissue homogenate, resulting in identification of an optimal recombinant Fab clone (Number 29). Further characterization by recloning number 29 into an expression vector showed significant induction of the Fab antibody in the clone number 29 by Isopropylβ-D-1-thiogalactopyranoside (IPTG). After purified by HiTrap Protein L, the specificity of the Fab antibody to P-gp21was also confirmed. Not only was the targeted region of this monoclonal Fab antibody identified as a 16-peptide epitope (ALKDKKELEGSGKIAT) comprising residues 883–898 within the transmembrane (TM) domain of human P-gp, but also the binding ability with it was verified. The clinical implication of our results for development of personalized therapy of colorectal cancer will be further studied.

Funder

National Technology R&D Program

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3